

ASME STANDARDS TECHNOLOGY, LLC

CREEP-FATIGUE FLAW GROWTH ANALYSIS TO SUPPORT ELEVATED TEMPERATURE FLAW SIZE ACCEPTANCE CRITERIA

STP-PT-089

Creep-Fatigue Flaw Growth Analysis to Support Elevated Temperature Flaw Size Acceptance Criteria

Prepared by:

Francesco Deleo, Ph.D., Tom Riordan, P.E., Jeff Baylor and Michael Cohen, P.E. TerraPower, LLC

Date of Issuance: January 31, 2020

This publication was prepared by ASME Standards Technology, LLC ("ASME ST-LLC") and sponsored by The American Society of Mechanical Engineers ("ASME").

Neither ASME, ASME ST-LLC, the authors, nor others involved in the preparation or review of this publication, nor any of their respective employees, members, or persons acting on their behalf, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe upon privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by ASME ST-LLC or others involved in the preparation or review of this publication, or any agency thereof. The views and opinions of the authors, contributors and reviewers of the publication expressed herein do not necessarily reflect those of ASME ST-LLC or others involved in the preparation or review of this publication, or any agency thereof.

ASME ST-LLC does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a publication against liability for infringement of any applicable Letters Patent, nor assumes any such liability. Users of a publication are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this publication.

ASME is the registered trademark of The American Society of Mechanical Engineers.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

ASME Standards Technology, LLC Two Park Avenue, New York, NY 10016-5990

> ISBN No. 978-0-7918-7346-5 Copyright © 2020 ASME Standards Technology, LLC All Rights Reserved

TABLE OF CONTENTS

FORE	WORD	vii
ABST	RACT	viii
1 SC	COPE	1
2 IN	PUTS	2
2.1	Configurations	2
2.2	Flaw Configuration	
2.3	Analysis Methods	
2.4	Units	
2.5	Modeling Approach	
2.6	Geometry	
2.7	Boundary and Initial Conditions	9
2.8	Loading Conditions	
2.9	Operational Life and Load Cycles	17
2.10	Materials	17
3 ST	RESS ANALYSIS RESULTS	
3.1	Finite Element Modeling Strategy	
3.2	Stress Analysis Results and Stress Linearization	
3.3	Transient Heat Transfer and Stress Analyses	
3.4	Implementation Validation	
4 AS	SSUMPTIONS	
4.1	American Petroleum Institute (API) 579-1 / ASME FFS-1	
4.2	Electricite de France (EDF) Recommended Procedure R5 V4/5	
4.3	Electric Power Research Institute (EPRI) Boiler Life Evaluation and Simulation System	1
(BLI	ESS)	
5 AN	NALYSIS METHODOLOGIES	
5.1	Dissection of loading condition into loading cycles for analyses	
5.2	Convergence criterion to find a _c	
5.3	American Petroleum Institute (API) 579-1 / ASME FFS-1	
5.4	Electricite de France (EDF) Recommended Procedure R5 V4/5	
5.5	Electric Power Research Institute (EPRI) Boiler Life Evaluation and Simulation System	1
(BLI	ESS)	
6 RE	ESULTS	
6.1	Results using the API 579-1 / ASME FFS-1 methodology	
6.2	Results using the R5 V4/5 methodology	
6.3	Results using the BLESS methodology	
6.4	Supporting information	71
7 VI	ERIFICATION VIA HAND CALCULATIONS	73
7.1	Hand calculation using API 579-1/ASME FFS-1	
7.2	Hand calculation using R5 V4/5	
7.3	Hand calculation using BLESS	
8 DI	SCUSSION	

8.1	Creep crack initiation and growth with R5 V4/5	90
8.2	Faster crack growth for semi-elliptical than infinite length flaws in BLESS	91
9 CO	NCLUSIONS	94
REFER	REFERENCES	
APPEN	APPENDIX A: STATEMENT OF WORK (SOW)	

LIST OF FIGURES AND TABLES

Table 2-1. Components with Dimensions and Loading in Imperial and SI Units
Table 2-2. Flaw Configurations and Numbering
Figure 2-1. Flaw #1: Inside Surface Crack, Circumferential Direction, Infinite Length
Figure 2-2. Flaw #2: Inside Surface Crack, Circumferential Direction, Semi-Elliptical Shape
Figure 2-3. Flaw #3: Outside Surface Crack, Circumferential Direction, Infinite Length
Figure 2-4. Flaw #4: Outside Surface Crack, Circumferential Direction, Semi-Elliptical Shape
Figure 2-5. Flaw #5: Embedded Crack, Circumferential Direction, Infinite Length
Figure 2-6. Flaw #6: Embedded Crack, Circumferential Direction, Semi-Elliptical Shape
Figure 2-7. Flaw #7: Inside Surface Crack, Longitudinal Direction, Infinite Length
Figure 2-8. Flaw #8: Inside Surface Crack, Longitudinal Direction, Semi-Elliptical Shape
Figure 2-9. Flaw #9: Outside Surface Crack, Longitudinal Direction, Infinite Length
Figure 2-10. Flaw #10: Outside Surface Crack, Longitudinal Direction, Semi-Elliptical Shape7
Figure 2-11. Flaw #11: Embedded Crack, Longitudinal Direction, Infinite Length
Figure 2-12. Flaw #12 Embedded Crack, Longitudinal Direction, Semi-Elliptical Shape7
Figure 2-13. Geometry Modelling Approach
Figure 2-14. Models' Constraining and Initial Conditions for Axisymmetric Model 10
Table 2-3. Normalized Transient Temperature Conditions in [°F/°F] for all Start Up Cycles 11
Table 2-4. Normalized Transient Temperature Conditions in $[^{\circ}C/^{\circ}C]$ for all the Cold Start Cycle 12
Table 2-5. Normalized Transient Temperature Conditions in [°C/°C] for all the Warm Start Cycle 13
Table 2-6. Normalized Transient Temperature Conditions in [°C/°C] for all the Hot Start Cycle13
Table 2-7. Normalized Transient Temperature Conditions in [°F/°F] for all the Shutdown Cycles
Table 2-8. Normalized Transient Temperature Conditions in [°C/°C] for all the Shutdown Cycles Tube
Components
Table 2-9. Normalized Transient Temperature Conditions in [°C/°C] for all the Shutdown Cycles Pipe Components 14
Table 2-10. Normalized Transient Pressure Conditions in for all Start Up Cycles 15
Table 2-11. Normalized Transient Pressure Conditions in for all Shut Down Cycles
Figure 2-15. Applied Loading Conditions
Table 2-12. Material Utilized in the Analyses 18
Figure 2-16. Modulus of Elasticity as a Function of Temperature [4]
Figure 2-17. Density as a Function of Temperature [4]
Figure 2-18. Thermal Diffusivity as a Function of Temperature [4] 19
Figure 2-19. Thermal Conductivity as a Function of Temperature [4]19
Figure 2-20. Specific Heat Capacity as a Function of Temperature

Figure 2-21. Mean Coefficient of Thermal Expansion as a Function of Temperature. Reference Temperature = 20 °C [4]	20
Figure 3-1. Typical Finite Element Model and Mesh Density	21
Figure 3-2. S22 (Longitudinal) and S33 (Hoop) Stress at the Inner, Middle, and Outer Location through the Thickness Plotted versus Time for SHT_Gr22 and the Cold Start Up Cycle	22
Figure 3-3. Stress Distribution through the Thickness for SHT_Gr22 at Approximately 50%, 75% and End of the Cold Start Up Cycle in the Axial (Left) and Hoop (Right) Directions	23
Figure 3-4. S22 (Longitudinal) and S33 (Hoop) Stress at The Inner, Middle, and Outer Location through the Thickness Plotted Versus Time for RHT_Gr22 and the Cold Start Up Cycle, Steady State Solution.	ı 24
Figure 3-5. S22 (Longitudinal) and S33 (Hoop) Stress at the Inner, Middle, and Outer Location through the Thickness Plotted versus Time for RHT_Gr22 and the Cold Start Up Cycle, Transient Solution	25
Figure 3-6. S22 (Longitudinal) and S33 (Hoop) Stress at the Inner, Middle, and Outer Location through the Thickness Plotted versus Time for SHP_Gr22 and the Cold Start Up Cycle, Steady State Solution 7	25
Figure 3-7. Temperature at the Inner and Outer Point through the Thickness and Average Temperature (Left) and Temperature Difference between Inner and Outer Points for SHP_Gr22 and the Cold Start Up Cycle, Transient Solution	26
Figure 3-8. S22 (Longitudinal) And S33 (Hoop) Stress at the Inner, Middle, And Outer Location through the Thickness Plotted versus Time for SHP_Gr22 and the Cold Start Up Cycle. Transient Solution	h 26
Figure 3-9. Axial Stress Distribution through Time at Selected Points through the Thickness (Top) and Applied Temperature at Inner Surface through Time Distribution for Comparison	27
Figure 3-10. Dimensions and Boundary Conditions for Simplified Heat Transfer Model	29
Figure 3-11. Longitudinal and Hoop Stresses at the Inner and Outer Location through the Thickness Plotted versus Time for SHP_Gr22 and the Cold Start Up Cycle for Transient Solution	30
Figure 5-1. First 30 Entries of Cycle List of Equation 5-2	35
Figure 5-2. API 579-1/ASME FFS-1 Methodology Applied in an Iterative Fashion	38
Table 5-1. Sources for Material Properties as Allowed by API 579-1	39
Table 5-2. Flaw Configurations and Corresponding Reference Stress Solution	40
Figure 5-3. R5 V4/5 Methodology Applied in an Iterative Fashion	46
Table 5-3. Sources for Material Properties as Allowed by R5 V4/5	47
Table 5-4. Sources for Creep Rupture Data for All Materials	48
Table 5-5. Creep Crack Growth Data from BS 7910 [13]	50
Figure 5-4. EPRI BLESS Methodology Applied in an Iterative Fashion	57
Table 5-6. Material Properties used in BLESS Calculation for Gr22 in [ksi, in, hrs, °F]	58
Table 5-7. Material Properties used in BLESS Calculation for Gr91 in [ksi, in, hrs, °F]	59
Table 5-8. Stress Intensity, Fully Plastic J-Integral (J _p), and Steady State Creep Crack Driving Force (C* Solutions for Each Flaw Configuration Case	*) 60
Table 5-9. Pipe/Tube Radius to Wall Thickness Ratios	61
Figure 5-5. Visual Representation of Flaw Configurations Associated with Case 3 – 5 from Zahoor [9].	61
Figure 5-6. Visual Representation of Buchalet [22] Idealization for Flaw 11	62
Table 6-1. Maximum Allowable Flaw Sizes for the Configurations of Interest Analyzed with the API 579-1/ASME FFS-1 Methodology	68
Table 6-2. Maximum Allowable Flaw Sizes for the Configurations of Interest Analyzed with the R5 V4/5methodology	69

Table 6-3. Maximum Allowable Flaw Sizes for the Configurations of Interest Analyzed with the EPRI BLESS Methodology	. 70
Figure 6-1. Example of Data Provided for Each Run at the Maximum Allowable Flaw Size	. 72
Figure 8-1. Calculated Crack Growth for Sht_Gr22_Long_Mid_Infinite Configuration Solved With R5 V4/5 with A Starting Flaw Size of $a/t = 20\%$. 90
Figure 8-2. Typical Shapes for Creep Crack Growth Curves from [23]	.91
Table 8-1. Comparison of BLESS Solutions for Longitudinal Semi-Elliptical versus Full Length Cracks for the Grade 22 Reheater Tube	s . 92
Figure 8-3. Crack Depth versus Time for Rht_Gr22_Long_Inside_Semiellipt Using the BLESS Methodology and an Initial Crack of a/t = 2%	. 92
Figure 8-4. Crack Depth versus Time for Rht_Gr22_Long_Inside_Infinite Using the BLESS Methodology and an Initial Crack of a/t = 2%	. 93
Figure 8-5. Normalized Fully-Plastic J-Integral Solutions versus a/t	.93

FOREWORD

The goal of this publication is to analyze a matrix of typical elevated temperature components using recognized creep-fatigue flaw growth analysis methods and data. The authors acknowledge, with deep appreciation, the activities of ASME staff and volunteers who have provided valuable technical input, advice and assistance with review of, commenting on, and editing of, this document.

Established in 1880, the ASME is a professional not-for-profit organization with more than 100,000 members and volunteers promoting the art, science and practice of mechanical and multidisciplinary engineering and allied sciences. ASME develops codes and standards that enhance public safety, and provides lifelong learning and technical exchange opportunities benefiting the engineering and technology community. Visit <u>https://www.asme.org/</u> for more information.

ASME ST-LLC is a not-for-profit Limited Liability Company, with ASME as the sole member, formed in 2004 to carry out work related to new and developing technology. ASME ST-LLC's mission includes meeting the needs of industry and government by providing new standards-related products and services, which advance the application of emerging and newly commercialized science and technology, and providing the research and technology development needed to establish and maintain the technical relevance of codes and standards. Visit <u>http://asmestllc.org/</u> for more information.

ABSTRACT

Creep fatigue crack growth analyses using the EDF R5 V4/5, API 579-1/ASME FFS-1, and EPRI BLESS methodologies are carried out in an iterative fashion on four components: superheater tube and pipe, and reheater tube and pipe. Three materials are considered and twelve flaw configurations, which varied in orientation, location and geometry. The scope of the work is to calculate the largest initial flaw size for each case that satisfies the specified transient operating conditions: temperature, pressure, time, and cycles. The stresses are calculated via transient finite element analyses and software is developed to apply the three fracture mechanics methodologies. Extensive unit-testing is implemented to verify the codes and several hand calculations are done and included in the report. The results are compared in tabulated format and conclusions are drawn.